Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions
نویسنده
چکیده
Abstract. In this paper, we prove some a priori stability estimates (in weighted Sobolev spaces) for the spatially homogeneous Boltzmann equation without angular cutoff (covering every physical collision kernels). These estimates are conditioned to some regularity estimates on the solutions, and therefore reduce the stability and uniqueness issue to the one of proving suitable regularity bounds on the solutions. We then prove such regularity bounds for a class of interactions including the so-called (non cutoff and non mollified) hard potentials and moderately soft potentials. In particular, we obtain the first result of global existence and uniqueness for these long-range interactions.
منابع مشابه
On Measure Solutions of the Boltzmann Equation, part I: Moment Production and Stability Estimates
The spatially homogeneous Boltzmann equation with hard potentials is considered for measure valued initial data having finite mass and energy. We prove the existence of weak measure solutions, with and without angular cutoff on the collision kernel; the proof in particular makes use of an approximation argument based on the Mehler transform. Moment production estimates in the usual form and in ...
متن کاملAn example of non - uniqueness for solutions to thehomogeneous Boltzmann equation
The paper deals with the spatially homogeneous Boltzmann equation for hard potentials. An example is given which shows that, even though it is known that there is only one solution that conserves energy, there may be other solutions for which the energy is increasing; uniqueness holds if and only if energy is assumed to be conserved
متن کاملStability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres
We consider the spatially homogeneous Boltzmann equation for inelastic hard spheres, in the framework of so-called constant normal restitution coefficients α ∈ [0, 1]. In the physical regime of a small inelasticity (that is α ∈ [α∗, 1) for some constructive α∗ > 0) we prove uniqueness of the self-similar profile for given values of the restitution coefficient α ∈ [α∗, 1), the mass and the momen...
متن کاملQuantitative Uniform in Time Chaos Propagation for Boltzmann Collision Processes
Abstract. This paper is devoted to the study of mean-field limit for systems of indistinguables particles undergoing collision processes. As formulated by Kac [22] this limit is based on the chaos propagation, and we (1) prove and quantify this property for Boltzmann collision processes with unbounded collision rates (hard spheres or longrange interactions), (2) prove and quantify this property...
متن کاملOn the well-posedness of the spatially homogeneous Boltzmann equation with a moderate angular singularity
Abstract. We prove an inequality on the Kantorovich-Rubinstein distance – which can be seen as a particular case of a Wasserstein metric– between two solutions of the spatially homogeneous Boltzmann equation without angular cutoff, but with a moderate angular singularity. Our method is in the spirit of [7]. We deduce some well-posedness and stability results in the physically relevant cases of ...
متن کامل